

Calculated Fields Scripting

Guide

Revised: February 14th, 2020

The information contained in this document is subject to change without notice.

This document contains proprietary information which is protected by copyright.

All rights are reserved. No part of this document may be photocopied, reproduced, or

translated to another language without the prior written consent of TechnoSolutions.

This Technical Paper is for informational purposes only. TECHNOSOLUTIONS MAKES NO

WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS

DOCUMENT.

Copyright © 2017-2020 TechnoSolutions Corp. All rights reserved.

 Calculated Fields Scripting Guide Page 2 of 57

Table of Contents

Overview .. 3

How to define Calculated Fields? ... 3

Programming Languages for Scripting .. 3

Basic Syntax .. 4

Overview ... 4

Script structure ... 4

Pascal Syntax ... 13

Overview .. 13

Script structure .. 13

Functions .. 23

Functions available in Pascal and Basic Languages ... 23

Functions to access field value .. 23

Arithmetic Functions ... 26

String manipulation functions ... 30

Trigonometric functions .. 37

Date and Time functions ... 37

Logarithm functions .. 43

Miscellaneous functions .. 44

Functions available in Basic language only .. 48

 Calculated Fields Scripting Guide Page 3 of 57

Overview

Calculated Fields are the fields that derive their values using specified calculation performed

on values of other fields of a record.

Calculated Fields can be of two types:

 Text fields: This type of field can display the result of a calculation formula that gives a

text value. For example, you can concatenate values of two fields.

 Numeric (Decimal fields): This type of field can display the result of a calculation

formula that outputs a numeric value. For example, you can perform mathematical

operations on numeric fields to calculate the value of a numeric calculated field.

How to define Calculated Fields?

After learning the concepts and technical features of Calculated Fields from this document,

you can learn about creating and using Calculated Fields in the TopTeam repository using this

help article: Configuring and using Calculated Fields.

Programming Languages for Scripting

For scripting Calculated Fields you use one of the two supported programming languages:

 Basic

 Pascal

http://www.technosolutions.com/kb/21850/configuring-and-using-calculated-fields/

 Calculated Fields Scripting Guide Page 4 of 57

Basic Syntax

Overview

· sub .. end and function .. end declarations

· byref and dim directives

· if .. then .. else .. end constructor

· for .. to .. step .. next constructor

· do .. while .. loop and do .. loop .. while constructors

· do .. until .. loop and do .. loop .. until constructors

· ^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators

· try .. except and try .. finally blocks

· select case .. end select constructor

· array constructors (x:=[1, 2, 3];)

· exit statement

· access to object properties and methods (ObjectName.SubObject.Property)

Script structure

One line Script

If you just have a one line calculation formula to be processed, you can write a one line script

to set value in the implicitly declared variable "Output".

Examples:

Script1:

Output = GetFieldValue("Title") + GetFieldValue("State")

Script2:

Output = GetWeightageOf("Priority")* GetWeightageOf("Complexity")

Multiline Script

Here the structure is made of two major blocks:

a) Main block

b) Procedure and function declarations

 Calculated Fields Scripting Guide Page 5 of 57

Main block is mandatory. There is no requirement for the main block to be put inside a

begin..end pair. It can be a single statement. The script should set the result in a special

variable called "Output".

Examples:

SCRIPT 1:

' This is a function declaration

FUNCTION GetTitleAndState

 GetTitleAndState = GetFieldValue("Title") + GetFieldValue("State")

END FUNCTION

Output = GetTitleAndState //This is main block

SCRIPT 2:

' This is a method declaration

SUB SetTitleAndState

 Output = GetFieldValue('Title') + GetFieldValue('State');

END SUB

' This is main block

SetTitleAndState

Like in normal Basic script, statements in a single line can be separated by ":" character.

NOTE

The script must set the result in the implicitly declared variable

"Output" to display it in the calculated field.

 Calculated Fields Scripting Guide Page 6 of 57

Identifiers

Identifier names in script (variable names, function and procedure names, etc.) follow the

most common rules in Basic: should begin with a character (a..z or A..Z), or '_', and can be

followed by alphanumeric chars or '_' char. Cannot contain any other character or spaces.

Valid identifiers:

VarName

_Some

V1A2

_____Some____

Invalid identifiers:

2Var

My Name

Some-more

This,is,not,valid

Assign statements

Assign statements (assign a value or expression result to a variable or object property) are

built using "=".

Example:

MyVar = 2

Button.Caption = "This " + "is ok."

Character strings

Strings (sequence of characters) are declared in Basic using double quote (") character.

Examples:

A = "This is a text"

Str = "Text "+"concat"

 Calculated Fields Scripting Guide Page 7 of 57

Comments

Comments can be inserted inside script. You can use ' chars or REM. Comment will finish at

the end of line.

Examples:

' This is a comment before ShowMessage

ShowMessage("Ok")

REM This is another comment

ShowMessage("More ok!")

' And this is a comment

' with two lines

ShowMessage("End of okays")

Variables

There is no need to declare variable types in script. Thus, you declare variable just using DIM

directive and its name. There is no need to declare variables if scripter property

OptionExplicit is set to false. In this case, variables are implicit declared. If you want to have

more control over the script, set OptionExplicit property to true.

This will raise a compile error if variable is used but not declared in script.

Examples:

SCRIPT 1:

SUB Msg

 DIM S

 S = "Hello world!"

 ShowMessage(S)

END SUB

SCRIPT 2:

DIM A

A = 0

A = A+1

ShowMessage(A)

 Calculated Fields Scripting Guide Page 8 of 57

NOTE

If script property OptionExplicit is set to false, then variable

declarations are not necessary in any of the scripts above.

Indexes

Strings, arrays and array properties can be indexed using "[" and "]" chars. For example,

if Str is a string variable, the expression Str[3] returns the third character in the string denoted

by Str, while Str[I + 1] returns the character immediately after the one indexed by I.

Examples:

MyChar = MyStr[2]

MyStr[1] = "A"

MyArray[1,2] = 1530

Lines.Strings[2] = "Some text"

Arrays

Script support array constructors and support to variant arrays. To construct an array, use "["

and "]" chars. You can construct multi-index array nesting array constructors. You can then

access arrays using indexes. If array is multi-index, separate indexes using ",".

If variable is a variant array, script automatically support indexing in that variable. A variable

is a variant array is it was assigned using an array constructor, if it is a direct reference to a

Delphi variable which is a variant array (see Delphi integration later) or if it was created using

VarArrayCreate procedure.

Arrays in script are 0-based index.

Examples:

NewArray = [2,4,6,8]

Num = NewArray[1] //Num receives "4"

MultiArray = [["green","red","blue"] ,

["apple","orange","lemon"]]

Str = MultiArray[0,2] //Str receives 'blue'

 Calculated Fields Scripting Guide Page 9 of 57

MultiArray[1,1] = "new orange"

If statements

There are two forms of if statement: if...then..end if and the if...then...else..end if. Like normal

Basic, if the if expression is true, the statements are executed. If there is else part and

expression is false, statements after else are executed.

Examples:

IF J <> 0 THEN Result = I/J END IF

IF J = 0 THEN Exit ELSE Result := I/J END IF

IF J <> 0 THEN

 Result = I/J

 Count = Count + 1

ELSE

 Done = True

END IF

While statements

A While statement is used to repeat statements, while a control condition (expression) is

evaluated as true. The control condition is evaluated before the statements. Hence, if the

control condition is false at first iteration, the statement sequence is never executed. The

while statement executes its constituent statement repeatedly, testing expression before

each iteration. As long as expression returns true, execution continues.

Examples:

WHILE (Data[I] <> X) I = I + 1 END WHILE

WHILE (I > 0)

 IF Odd(I) THEN Z = Z * X END IF

 X = Sqr(X)

END WHILE

WHILE (not Eof(InputFile))

 Readln(InputFile, Line)

 Process(Line)

END WHILE

 Calculated Fields Scripting Guide Page 10 of 57

Loop statements

Scripter support loop statements. The possible syntax are:

DO WHILE expr statements LOOP

DO UNTIL expr statements LOOP

DO statements LOOP WHILE expr

DO statement LOOP UNTIL expr

Statements will be execute WHILE expr is true, or UNTIL expr is true. If expr is before

statements, the control condition will be tested before iteration. Otherwise, control condition

will be tested after iteration.

Examples:

DO

 K = I mod J

 I = J

 J = K

LOOP UNTIL J = 0

DO UNTIL I >= 0

 Write("Enter a value (0..9): ")

 Readln(I)

LOOP

DO

K = I mod J

I = J

J = K

LOOP WHILE J <> 0

DO WHILE I < 0

 Write("Enter a value (0..9): ")

 Readln(I)

LOOP

For statements

Scripter support for statements with the following syntax:

FOR counter = initialValue TO finalValue

 Calculated Fields Scripting Guide Page 11 of 57

STEP stepValue statements NEXT. For statement set counter to initialValue, repeats execution

of statement until "next" and increment value of counter by stepValue, until counter reaches

finalValue.

Step part is optional, and if omitted stepValue is considered 1.

Examples:

SCRIPT 1:

FOR c = 1 TO 10 STEP 2

 a = a + c

NEXT

SCRIPT 2:

FOR I = a TO b

 j = i ^ 2 sum = sum + j

NEXT

Select case statements

Scripter support select case statements with following syntax:

SELECT CASE selectorExpression

 CASE caseexpr1

 statement1

 …

 CASE caseexprn

 statementn

 CASE ELSE

 elsestatement

END SELECT

If selectorExpression matches the result of one of caseexprn expressions, the respective

statements will be execute. Otherwise, elsestatement will be executed. Else part of case

statement is optional.

Example:

SELECT CASE uppercase(Fruit)

 CASE "lime" ShowMessage("green")

 CASE "orange"

 ShowMessage("orange")

 Calculated Fields Scripting Guide Page 12 of 57

 CASE "apple" ShowMessage("red")

CASE ELSE

 ShowMessage("black")

END SELECT

Function and sub declaration

Declaration of functions and subs are similar to Basic. In functions to return function values,

use implicit declared variable which has the same name of the function. Parameters by

reference can also be used, using BYREF directive.

Examples:

SUB HelloWord

 ShowMessage("Hello world!")

END SUB

SUB UpcaseMessage(Msg)

 ShowMessage(Uppercase(Msg))

END SUB

FUNCTION TodayAsString

 TodayAsString = DateToStr(Date)

END FUNCTION

FUNCTION Max(A,B)

 IF A>B THEN

 MAX = A

 ELSE

 MAX = B

 END IF

END FUNCTION

SUB SwapValues(BYREF A, B)

 DIM TEMP

 TEMP = A

A = B

B = TEMP

END SUB

 Calculated Fields Scripting Guide Page 13 of 57

Pascal Syntax

 Overview

 Current Pascal syntax supports:

· begin .. end constructor

· procedure and function declarations

· if .. then .. else constructor

· for .. to .. do .. step constructor

· while .. do constructor

· repeat .. until constructor

· try .. except and try .. finally blocks

· case statements

· array constructors (x:=[1, 2, 3];)

· ^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators

· access to object properties and methods (ObjectName.SubObject.Property)

Script structure

One line Script

If you just have a one line calculation formula to be processed, you can write a one line script

to set value in implicitly declared variable "Output".

Example:

Script1:

Output := GetFieldValue('Title') + GetFieldValue('State');

Script2:

Output := GetWeightageOf('Priority')* GetWeightageOf('Complexity');

Multiline Script

Here the structure is made of two major blocks: a) main block and b) procedure and function

declarations. Main block is mandatory. There is no need for main block to be inside

 Calculated Fields Scripting Guide Page 14 of 57

begin..end. It could be a single statement. The script should set the result in a special variable

called "Output".

 Examples:

SCRIPT 1:

//This is a function declaration

function GetTitleAndState : String;

begin

 Result := GetFieldValue('Title') + GetFieldValue('State');

end;

Output := GetTitleAndState; //This is main block

SCRIPT 2:

//This is a procedure declaration

procedure SetTitleAndState;

begin

 Output := GetFieldValue('Title') + GetFieldValue('State');

end;

SetTitleAndState; //This is main block

SCRIPT 2:

//This script has only main block

Output := GetFieldValue('Title') + GetFieldValue('State');

Like in Pascal, statements should be terminated by ";" character. Begin..end blocks are

allowed to group statements.

NOTE

The script must set the result in the implicitly declared variable

"Output" to display it in the calculated field.

 Calculated Fields Scripting Guide Page 15 of 57

 Identifiers

Identifier names in script (variable names, function and procedure names, etc.) follow the

most common rules in Pascal: should begin with a character (a..z or A..Z), or '_', and can be

followed by alphanumeric chars or '_' char. Cannot contain any other character or spaces.

Valid identifiers:

VarName

_Some

V1A2

_____Some____

Invalid identifiers:

2Var

My Name

Some-more This,is,not,valid

Assign statements

Just like in Pascal, assign statements (assign a value or expression result to a variable or

object property) are built using ":=".

Examples:

MyVar := 2;

Caption := 'This ' + 'is ok.';

Character strings

Strings (sequence of characters) are declared in Pascal using single quote (') character.

Double quotes (") are not used. You can also use #nn to declare a character inside a string.

There is no need to use '+' operator to add a character to a string.

Examples:

A := 'This is a text';

Str:= 'Text '+'concat';

 Calculated Fields Scripting Guide Page 16 of 57

B := 'String with CR and LF char at the end'#13#10;

C := 'String with '#33#34' characters in the middle';

Comments

Comments can be inserted inside script. You can use // chars or (* *) or { } blocks. Using //

char the comment will finish at the end of line.

//This is a single line comment

(* This is another comment *)

{

 And this is a comment

 with two lines

}

Variables

There is no need to declare variable types in script. Thus, you declare variable just using var

directive and its name. There is no need to declare variables if scripter property

OptionExplicit is set to false. In this case, variables are implicit declared. If you want to have

more control over the script, set OptionExplicit property to true. This will raise a compile

error if variable is used but not declared in script.

Examples:

SCRIPT 1:

procedure Msg;

var S;

begin

 S:='Hello world!';

 ShowMessage(S);

end;

 Calculated Fields Scripting Guide Page 17 of 57

SCRIPT 2:

var A;

begin

 A:=0;

 A:=A+1;

end;

SCRIPT 3:

var S;

S:='Hello World!';

ShowMessage(S);

Indexes

Strings, arrays and array properties can be indexed using "[" and "]" chars. For example, if Str

is a string variable, the expression Str[3] returns the third character in the string denoted by

Str, while Str[I + 1] returns the character immediately after the one indexed by I.

Examples:

MyChar:=MyStr[2];

MyStr[1]:='A';

MyArray[1,2]:=1530;

Lines.Strings[2]:='Some text';

Arrays

Script support array constructors and support to variant arrays. To construct an array, use "["

and "]" chars. You can construct multi-index array nesting array constructors. You can then

access arrays using indexes. If array is multi-index, separate indexes using ",".

If variable is a variant array, script automatically support indexing in that variable. A variable

is a variant array is it was assigned using an array constructor, if it is a direct reference to a

Delphi variable which is a variant array (see Delphi integration later) or if it was created using

VarArrayCreate procedure. Arrays in script are 0-based index.

Examples:

 Calculated Fields Scripting Guide Page 18 of 57

NewArray := [2,4,6,8];

Num:=NewArray[1]; //Num receives "4"

MultiArray := [['green','red','blue'] , ['apple','orange','lemon']

];

Str:=MultiArray[0,2]; //Str receives 'blue'

MultiArray[1,1]:='new orange';

If statements

There are two forms of if statement: if...then and if...then...else. Like normal Pascal, if the if

expression is true, the statement (or block) is executed. If there is else part and expression is

false, statement (or block) after else is execute.

Examples:

if J <> 0 then Output:= I/J;

if J = 0 then Exit else Output := I/J;

if J <> 0 then

begin

 Output:= I/J;

 Count := Count + 1;

end

else

 Done := True;

While statements

A while statement is used to repeat a statement or a block, while a control condition

(expression) is evaluated as true. The control condition is evaluated before the statement.

Hence, if the control condition is false at first iteration, the statement sequence is never

executed. The while statement executes its constituent statement (or block) repeatedly,

testing expression before each iteration. As long as expression returns true, execution

continues.

Examples:

 Calculated Fields Scripting Guide Page 19 of 57

while Data[I] <> X do

I := I + 1;

while I > 0 do

begin

 if Odd(I) then Z := Z * X;

 I := I div 2;

 X := Sqr(X);

end;

Repeat statements

The syntax of a repeat statement is repeat statement1; ...; statementn; until expression where

expression returns a Boolean value. The repeat statement executes its sequence of

constituent statements continually, testing expression after each iteration. When expression

returns true, the repeat statement terminates. The sequence is always executed at least once

because expression is not evaluated until after the first iteration.

Examples:

repeat

 K := I mod J;

 I := J;

 J := K;

until J = 0;

For statements

Scripter support for statements with the following syntax:

for counter := initialValue to finalValue do statement

For statement set counter to initialValue, repeats execution of statement (or block) and

increment value of counter until counter reaches finalValue.

Examples:

 Calculated Fields Scripting Guide Page 20 of 57

SCRIPT 1:

for c:=1 to 10 do

 a:=a+c;

SCRIPT 2:

for i:=a to b do

begin

 j:=i^2;

 sum:=sum+j;

end;

Case statements

Scripter support case statements with following syntax:

 case selectorExpression of

 caseexpr1: statement1;

 ...

 caseexprn: statementn;

 else

 elsestatement;

end

if selectorExpression matches the result of one of caseexprn expressions, the respective

statement (or block) will be execute. Otherwise, elsestatement will be execute. Else part of

case statement is optional. Different from Delphi, case statement in script doesn't need to

use only ordinal values. You can use expressions of any type in both selector expression and

case expression.

Example:

case uppercase(Fruit) of

 'lime': color :='green';

 'orange': color := 'orange';

 'apple': color := 'red';

else

 Calculated Fields Scripting Guide Page 21 of 57

 color := 'black';

 end;

Function and procedure declaration

Declaration of functions and procedures are similar to Object Pascal in Delphi, with the

difference you don't specify variable types. Just like OP, to return function values, use implicit

declared result variable. Parameters by reference can also be used, with the restriction

mentioned: no need to specify variable types.

Examples:

procedure HelloWorld;

begin

 ShowMessage('Hello world!');

end;

procedure UpcaseMessage(Msg);

begin

 ShowMessage(Uppercase(Msg));

end;

function TodayAsString;

begin

 result:=DateToStr(Date);

end;

function Max(A,B);

begin

 if A>B then

 result:=A

else

 result:=B;

end;

procedure SwapValues(var A, B);

 Calculated Fields Scripting Guide Page 22 of 57

Var

 Temp;

begin

 Temp:=A;

 A:=B;

 B:=Temp;

end;

 Calculated Fields Scripting Guide Page 23 of 57

Functions

Functions are written in both Pascal and Basic syntax. However, there are some functions that

can be used in Pascal as well as Basic scripts. Click the below links to view the listed functions

for each:

 Functions available in Pascal and Basic Languages

 Functions available in Basic Language only

Functions available in Pascal and Basic Languages

NOTE

Although the signature of the functions described below are written in

Pascal syntax they can be used in Pascal as well as Basic scripts.

When using these functions in the Basic script you need to supply

corresponding data types of the Basic language as parameters.

Functions to access field value

Name Description

GetFieldValue function GetFieldValue(FieldName : String) : Variant;

Returns the value in a field, such as State, Priority, Title, etc., of the current

record. Paremeter FieldName should have the name of the field whose value

you want.

Example:

Output := GetFieldValue('Est. Effort') -

GetFieldValue('Actual Effort');

NOTE

You can only get value of following type of fields: Number,

Decimal, Text, True/False, Date, Time, List, Project, User,

Team Member and Multi-Value.

This function cannot be used to get value of the following

fields:

http://automation-guide.technosolutions.com/pascal-and-basic

 Calculated Fields Scripting Guide Page 24 of 57

1. Value from a Large Field such as Large Text, Rich Text,

OLE Object, Diagrams, Use Case Flows, Test Case Steps,

etc.

2. Value from another Calculated Field.

GetWeightageOf function GetWeightageOf(FieldName : String) : Integer;

This function returns the weightage of the value in a List field.

When you define allowed values for a List field, you can define weightage of

each value. Refer to the screenshot below. You can use this function in the

calculation formula to get the weightage of the value of a List field.

Example:

Output := GetWeightageOf('Complexity');

If the value in Complexity field is Very High, the calculation formula will

display 90, if the value is High the calculation formula will display 80 and so

on.

 Calculated Fields Scripting Guide Page 25 of 57

IsFieldNull function IsFieldNull(FieldName : String) : Boolean;

This function can be used to detect whether a field is empty. The function will

return True if there is no value specified in the field, otherwise it will return

False.

Example:

if not IsFieldNull('Description') then Output :=

'Description is empty' else

 Output := 'Description has value';

NOTE

Unlike GetFieldValueOf, you can send the name of large

fields such as Rich Text, Large Text, OLE Objects, etc. as a

parameter in this function.

 Calculated Fields Scripting Guide Page 26 of 57

Arithmetic Functions

Name Description

Abs function Abs(X);

Abs returns the absolute value of the argument, X.

X is an integer-type or real-type expression.

Dec procedure Dec(var X[; N: Longint]);

The Dec procedure subtracts one or N from a variable.

X is a variable of an ordinal type (including Int64), or a pointer type if the extended

syntax is enabled.

N is an integer-type expression.

X decrements by 1, or by N if N is specified; that is, Dec(X) corresponds to the

statement X := X - 1, and Dec(X, N) corresponds to the statement X := X - N.

However, Dec generates optimized code and is especially useful in tight loops.

NOTE

If X is a pointer type, it decrements X by N times the size of the

type pointed to. Thus, given type

 PMytype = ^TMyType;

and var

 P: PMyType; the statement Dec(P); decrements P

by SizeOf(TMyType).

CAUTION

Do NOT use Dec on ordinal-type properties, if the property uses

a write procedure.

Frac function Frac(X: Extended): Extended;

The Frac function returns the fractional part of the argument X.

X is a real-type expression. The result is the fractional part of X; that is, Frac(X) = X

- Int(X).

 Calculated Fields Scripting Guide Page 27 of 57

Inc procedure Inc(var X [; N: Longint]);

Inc adds one or N to the variable X.

X is a variable of an ordinal type (including Int64), or a pointer type if the extended

syntax is enabled.

N is an integer-type expression.

X increments by 1, or by N if N is specified; that is, Inc(X) corresponds to the

statement X := X + 1, and Inc(X, N) corresponds to the statement X := X + N.

However, Inc generates optimized code and is especially useful in tight loops.

NOTE

If X is a pointer type, it increments X by N times the size of the

type pointed to. Thus, given type

 PMytype = ^TMyType;

and var

 P: PMyType; the statement Inc(P); increments

P by SizeOf(TMyType).

CAUTION

Do not use Inc on properties.

NOTE

Inc(S, I) where S is a ShortInt and I is a number greater than 127

will cause an EIntOverFlow exception to be raised if range and

overflow checking are on. Under Delphi 1.0 this did not raise an

exception.

Int

Int returns the integer part of X; that is, X rounded toward zero. X is a real-type

expression.

 Calculated Fields Scripting Guide Page 28 of 57

IntToHex function IntToHex(Value: Integer; Digits: Integer): string;

overload;

function IntToHex(Value: Int64; Digits: Integer): string;

overload;

IntToHex converts a number into a string containing the number's hexadecimal

(base 16) representation. Value is the number to convert. Digits indicates the

minimum number of hexadecimal digits to return.

Odd function Odd(X: Longint): Boolean;

Odd tests if the argument is an odd number. It returns True if X is an odd number,

False if X is even.

Random function Random [(Range: Integer)];

Random returns a random number within the range 0 <= X < Range. If Range is

not specified, the result is a realtype random number within the range 0 <= X < 1.

To initialize the random number generator, add a single call Randomize or assign a

value to the RandSeed variable before making any calls to Random.

NOTE

Because the implementation of the Random function may

change between compiler versions, we do not recommend using

Random for encryption or other purposes that require

reproducible sequences of pseudorandom numbers.

Round function Round(X: Extended): Int64;

The Round function rounds a real-type value to an integer-type value.

X is a real-type expression. Round returns an Int64 value that is the value of X

rounded to the nearest whole number. If X is exactly halfway between two whole

numbers, the result is always the even number. This method of rounding is often

called “Banker’s Rounding”.

If the rounded value of X is not within the Int64 range, a run-time error is

generated, which can be handled using the EInvalidOp exception.

 Calculated Fields Scripting Guide Page 29 of 57

NOTE

The behavior of Round can be affected by the Set8087CW

procedure or SetRoundMode function.

Sqr function Sqr(X: Extended): Extended;

function Sqr(X: Integer): Integer;

The Sqr function returns the square of the argument.

X is a floating-point expression. The result, of the same type as X, is the square of

X, or X*X.

Sqrt function Sqrt(X: Extended): Extended;

X is a floating-point expression. The result is the square root of X.

Trunc function Trunc(X: Extended): Int64;

The Trunc function truncates a real-type value to an integer-type value. X is a real-

type expression. Trunc returns an Int64 value that is the value of X rounded toward

zero.

If the truncated value of X is not within the Int64 range, an EInvalidOp exception is

raised.

 Calculated Fields Scripting Guide Page 30 of 57

String manipulation functions

Name Description

AnsiCompareStr function AnsiCompareStr(const S1, S2: string): Integer;

AnsiCompareStr compares S1 to S2, with case sensitivity. The compare operation

is controlled by the current locale. The return value is: Condition Return Value

S1 > S2 > 0

S1 < S2 < 0

S1 = S2 = 0

NOTE

Most locales consider lowercase characters to be less than the

corresponding uppercase characters. This is in contrast to ASCII

order, in which lowercase characters are greater than uppercase

characters.

Thus,

AnsiCompareStr('a','A') returns a value less than zero, while

CompareStr('a','A') returns a value greater than zero.

AnsiCompareText function AnsiCompareText(const S1, S2: string): Integer;

AnsiCompareText compares S1 to S2, without case sensitivity. The compare

operation is controlled by the current locale.

AnsiCompareText returns a value less than 0 if S1 < S2, a value greater than 0 if S1

> S2, and returns 0 if S1 = S2.

AnsiLowerCase function AnsiLowerCase(const S: string): string;

AnsiLowerCase returns a string that is a copy of the given string converted to

lower case. The conversion uses the current locale.

NOTE

This function supports multi-byte character sets (MBCS).

Append procedure Append(var F: Text);

Call Append to ensure that a file is opened with write-only access with the file

 Calculated Fields Scripting Guide Page 31 of 57

pointer positioned at the end of the file.

F is a text file variable and must be associated with an external file using

AssignFile.

If no external file of the given name exists, an error occurs.

If F is already open, it is closed, then reopened. The current file position is set to

the end of the file. If a Ctrl+Z (ASCII 26) is present in the last 128-byte block of

the file, the current file position is set so that the next character added to the file

overwrites the first Ctrl+Z in the block. In this way, text can be appended to a file

that terminates with a Ctrl+Z.

If F was not assigned a name, then, after the call to Append, F refers to the

standard output file.

CompareStr function CompareStr(const S1, S2: string): Integer;

CompareStr compares S1 to S2, with case-sensitivity.

The return value is less than 0 if S1 is less than S2, 0 if S1 equals S2, or greater

than 0 if S1 is greater than S2. The compare operation is based on the 8-bit

ordinal value of each character and is not affected by the current locale.

CompareText function CompareText(const S1, S2: string): Integer;

CompareText compares S1 and S2 and returns 0 if they are equal.

If S1 is greater than S2, CompareText returns an integer greater than 0. If S1 is less

than S2, CompareText returns an integer less than 0. CompareText is not case

sensitive and is not affected by the current locale.

Copy function Copy(S; Index, Count: Integer): string;

function Copy(S; Index, Count: Integer): array;

S is an expression of a string or dynamic-array type. Index and Count are integer-

type expressions. Copy returns a substring or sub array containing Count

characters or elements starting at S[Index].

If Index is larger than the length of S, Copy returns an empty string or array.

 Calculated Fields Scripting Guide Page 32 of 57

If Count specifies more characters or array elements than are available, only the

characters or elements from S[Index] to the end of S are returned.

NOTE

When S is a dynamic array, Copy can only be used as a parameter

in a call to a procedure or function that expects an array

parameter. That is, it acts like the Slice function when working

with dynamic arrays.

Delete procedure Delete(var S: string; Index, Count:Integer);

Delete removes a substring of Count characters from string S starting with

S[Index].

S is a string-type variable. Index and Count are integer-type expressions.

If index is larger than the length of the S or less than 1, no characters are deleted.

If count specifies more characters than remain starting at the index, Delete

removes the rest of the string. If count is less than 0, no characters are deleted.

Delete procedure Delete(var S: string; Index, Count:Integer);

Delete removes a substring of Count characters from string S starting with

S[Index].

S is a string-type variable. Index and Count are integer-type expressions.

If index is larger than the length of the S or less than 1, no characters are deleted.

If count specifies more characters than remain starting at the index, Delete

removes the rest of the string. If count is less than 0, no characters are deleted.

FloatToStr function FloatToStr(Value: Extended): string;

FloatToStr converts the floating-point value given by Value to its string

representation. The conversion uses general number format with 15 significant

digits. For greater control over the formatting of the string, use the FloatToStrF

function.

 Calculated Fields Scripting Guide Page 33 of 57

Format function Format(const Format: string; const Args: array of

const): string;

This function formats the series of arguments in the open array Args. Formatting

is controlled by the format string Format; the results are returned in the function

result as a string.

FormatFloat function FormatFloat(const Format: string; Value: Extended):

string;

FormatFloat formats the floating-point value given by Value using the format

string given by Format. The following format specifiers are supported in the

format string:

Specifier - Represents

0 - Digit place holder If the value being formatted has a digit in the position

where the '0' appears in the format string, then that digit is copied to the output

string. Otherwise, a '0' is stored in that position in the output string.

- Digit placeholder If the value being formatted has a digit in the position

where the '#' appears in the format string, then that digit is copied to the output

string. Otherwise, nothing is stored in that position in the output string.

. - Decimal point The first '.' character in the format string determines the

location of the decimal separator in the formatted value; any additional '.'

characters are ignored. The actual character used as a decimal separator in the

output string is determined by the DecimalSeparator global variable. The default

value of DecimalSeparator is specified in the Number Format of the International

section in the Windows Control Panel.

, - Thousand separator If the format string contains one or more ',' characters,

the output will have thousand separators inserted between each group of three

digits to the left of the decimal point. The placement and number of ',' characters

in the format string does not affect the output, except to indicate that thousand

separators are wanted. The actual character used as a thousand separator in the

output is determined by the ThousandSeparator global variable. The default value

of ThousandSeparator is specified in the Number Format of the International

section in the Windows Control Panel.

 Calculated Fields Scripting Guide Page 34 of 57

E+ - Scientific notation If any of the strings 'E+', 'E-', 'e+', or 'e-' are contained in

the format string, the number is formatted using scientific notation. A group of

up to four '0' characters can immediately follow the 'E+', 'E-', 'e+', or 'e-' to

determine the minimum number of digits in the exponent. The 'E+' and 'e+'

formats cause a plus sign to be output for positive exponents and a minus sign to

be output for negative exponents. The 'E-' and 'e-' formats output a sign

character only for negative exponents.

'xx'/"xx" - Characters enclosed in single or double quotes are output as-is, and

do not affect formatting.

; - Separates sections for positive, negative, and zero numbers in the format

string.

The locations of the leftmost '0' before the decimal point in the format string and

the rightmost '0' after the decimal point in the format string determine the range

of digits that are always present in the output string.

The number being formatted is always rounded to as many decimal places as

there are digit placeholders ('0' or '#') to the right of the decimal point. If the

format string contains no decimal point, the value being formatted is rounded to

the nearest whole number.

If the number being formatted has more digits to the left of the decimal

separator than there are digit placeholders to the left of the '.' character in the

format string, the extra digits are output before the first digit placeholder.

To allow different formats for positive, negative, and zero values, the format string

can contain between one and three sections separated by semicolons.

 One section: The format string applies to all values.

 Two sections: The first section applies to positive values and zeros, and

the second section applies to negative values.

 Three sections: The first section applies to positive values, the second

applies to negative values, and the third applies to zeros.

If the section for negative values or the section for zero values is empty, that is if

there is nothing between the semicolons that delimit the section, the section for

positive values is used instead.

If the section for positive values is empty, or if the entire format string is empty,

 Calculated Fields Scripting Guide Page 35 of 57

the value is formatted using general floating-point formatting with 15 significant

digits, corresponding to a call to FloatToStrF with the ffGeneral format. General

floating-point formatting is also used if the value has more than 18 digits to the

left of the decimal point and the format string does not specify scientific notation.

Insert procedure Insert(Source: string; var S: string; Index:

Integer);

Insert merges Source into S at the position S[index]. Source is a string-type

expression. S is a string-type variable of any length. Index is an integer-type

expression. It is a character index and not a byte index.

If Index is less than 1, it is mapped to a 1. If it is past the end of the string, it is set

to the length of the string, turning the operation into an append.

If the Source parameter is an empty string, Insert does nothing.

Insert throws an EOutOfMemory exception, if it is unable to allocate enough

memory to accomodate the new returned string.

IntToStr function IntToStr(Value: Integer): string; overload;

function IntToStr(Value: Int64): string; overload;

IntToStr converts an integer into a string containing the decimal representation of

that number.

Length function Length(S): Integer;

Length returns the number of characters actually used in the string or the number

of elements in the array.

For single-byte (AnsiString) and multibyte strings, Length returns the number of

bytes used by the string. For Unicode (WideString) strings, Length returns the

number of bytes divided by two. S is a string- or array-valued expression.

LowerCase 0function LowerCase(const S: string): string;

LowerCase returns a string with the same text as the string passed in S, but with

all letters converted to lowercase. The conversion affects only 7-bit ASCII

 Calculated Fields Scripting Guide Page 36 of 57

characters between 'A' and 'Z'. To convert 8-bit international characters, use

AnsiLowerCase.

Pos function Pos(Substr: string; S: string): Integer;

Pos searches for a substring, Substr, in a string, S. Substr and S are string-type

expressions.

Pos searches for Substr within S and returns an integer value that is the index of

the first character of Substr within S. Pos is case-sensitive. If Substr is not found,

Pos returns zero.

Trim function Trim(const S: string): string; overload;

function Trim(const S: WideString): WideString; overload;

Trim removes leading and trailing spaces and control characters from the given

string S.

TrimLeft function TrimLeft(const S: string): string; overload;

function TrimLeft(const S: WideString): WideString;

overload;

TrimLeft returns a copy of the string S with leading spaces and control characters

removed.

TrimRight function TrimRight(const S: string): string; overload;

function TrimRight(const S: WideString): WideString;

overload;

TrimRight returns a copy of the string S with trailing spaces and control characters

removed.

UpperCase function UpperCase(const S: string): string;

UpperCase returns a copy of the string S, with the same text but with all 7-bit

ASCII characters between 'a' and 'z' converted to uppercase. To convert 8-bit

international characters, use AnsiUpperCase instead.

 Calculated Fields Scripting Guide Page 37 of 57

Trigonometric functions

Name Description

ArcTan function ArcTan(X: Extended): Extended;

ArcTan returns the arctangent of X.

Cos function Cos(X: Extended): Extended;

Cos returns the cosine of the angle X, in radians.

Sin function Sin(X: Extended): Extended;

The Sin function returns the sine of the argument.

X is a real-type expression. Sin returns the sine of the angle X in radians.

Date and Time functions

Name Description

Date function Date: TDateTime;

Use Date to obtain the current local date as a TDateTime value. The time portion

of the value is 0 (midnight).

DateTimeToStr function DateTimeToStr(DateTime: TDateTime): string;

DateTimeToString converts the TDateTime value given by DateTime using the

format given by the ShortDateFormat global variable, followed by the time using

the format given by the LongTimeFormat global variable. The time is not

displayed if the fractional part of the DateTime value is zero.

DateToStr function DateToStr(Date: TDateTime): string;

Use DateToStr to obtain a string representation of a date value that can be used

for display purposes. The conversion uses the format specified by the

ShortDateFormat global variable.

 Calculated Fields Scripting Guide Page 38 of 57

DayOfWeek function DayOfWeek(Date: TDateTime): Integer;

DayOfWeek returns the day of the week of the specified date as an integer

between 1 and 7, where Sunday is the first day of the week and Saturday is the

seventh.

NOTE

DayOfWeek is not compliant with the ISO 8601 standard, which

defines Monday as the first day of the week. For an ISO 8601

compliant version, use the DayOfTheWeek function instead.

DecodeDate procedure DecodeDate(Date: TDateTime; var Year, Month, Day:

Word);

The DecodeDate procedure breaks the value specified as the Date parameter into

Year, Month, and Day values. If the given TDateTime value has a negative (BC)

year, the year, month, and day return parameters are all set to zero.

DecodeTime procedure DecodeTime(Time: TDateTime; var Hour, Min, Sec,

MSec: Word);

DecodeTime breaks the object specified as the Time parameter into hours,

minutes, seconds, and milliseconds.

EncodeDate function EncodeDate(Year, Month, Day: Word): TDateTime;

function TryEncodeDate(Year, Month, Day: Word; out Date:

TDateTime): Boolean;

EncodeDate returns a TDateTime value from the values specified as the Year,

Month, and Day parameters.

The year must be between 1 and 9999.

Valid Month values are 1 through 12.

Valid Day values are 1 through 28, 29, 30, or 31, depending on the Month value.

For example,

the possible Day values for month 2 (February) are 1 through 28 or 1 through 29,

depending on whether or not the Year value specifies a leap year.

 Calculated Fields Scripting Guide Page 39 of 57

If the specified values are not within range, EncodeDate raises an EConvertError

exception.

TryEncodeDate is identical to EncodeDate, except that TryEncodeDate responds

to out of range parameters by returning False instead of raising an exception.

EncodeTime function EncodeTime(Hour, Min, Sec, MSec: Word): TDateTime;

function TryEncodeTime(Hour, Min, Sec, MSec: Word; out

Time: TDateTime): Boolean;

EncodeTime encodes the given hour, minute, second, and millisecond into a

TDateTime value.

Valid Hour values are 0 through 24. If Hour is 24, Min, Sec, and MSec must all be

0, and the resulting TDateTime value represents midnight (12:00:00:000 AM) of

the following day.

Valid Min and Sec values are 0 through 59.

Valid MSec values are 0 through 999.

If the specified values are not within range, EncodeTime raises an EConvertError

exception.

The resulting value is a number between 0 and 1 (inclusive) that indicates the

fractional part of a day given by the specified time or (if 1.0) midnight on the

following day. The value 0 corresponds to midnight, 0.5 corresponds to noon,

0.75 corresponds to 6:00 pm, and so on.

TryEncodeTime is identical to EncodeTime, except that TryEncodeTime responds

to out of range parameters by returning False instead of raising an exception.

FormatDateTime function FormatDateTime(const Format: string; DateTime:

TDateTime): string;

FormatDateTime formats the TDateTime value given by DateTime using the

format given by Format.

If the string specified by the Format parameter is empty, the TDateTime value is

formatted as if a 'c' format specifier had been given.

 Calculated Fields Scripting Guide Page 40 of 57

StrToDate function StrToDate(const S: string): TDateTime;

Call StrToDate to parse a string that specifies a date. If S does not contain a valid

date, StrToDate raises an EConvertError exception.

S must consist of two or three numbers, separated by the character defined by

the DateSeparator global variable. The order for month, day, and year is

determined by the ShortDateFormat global variable--possible combinations are

m/d/y, d/m/y, and y/m/d.

If S contains only two numbers, it is interpreted as a date (m/d or d/m) in the

current year.

Year values between 0 and 99 are converted using the

TwoDigitYearCenturyWindow global variable.

If TwoDigitYearCenturyWindow is 0, year values between 0 and 99 are assumed

to be in the current century.

If TwoDigitYearCenturyWindow is greater than 0, its value is subtracted from the

current year to determine the “pivot”; years on or after the pivot are kept in the

current century, while years prior to the pivot are moved to the next century.

For example:

Current

year

TwoDigitYearC

enturyWindow

Pivot date =

mm/dd/03

date =

mm/dd/50

date =

mm/dd/68

1998 0 1900 1903 1950 1968

2002 0 2000 2003 2050 2068

1998 50 1948 2003 1950 1968

2000 50 1950 2003 1950 1968

2002 50 1952 2003 2050 1968

2020 50 1970 2003 2050 2068

2020 10 2010 2103 2050 2068

 Calculated Fields Scripting Guide Page 41 of 57

NOTE

The format of the date string varies when the values of

date/time formatting variables are changed.

StrToDateTime function StrToDateTime(const S: string): TDateTime;

Call StrToDate to parse a string that specifies a date and time value. If S does not

contain a valid date, StrToDate raises an EConvertError exception.

The S parameter must use the current locale’s date/time format. In the US, this is

commonly MM/DD/YY HH:MM:SS format. Specifying AM or PM as part of the

time is optional, as are the seconds. Use 24-hour time (7:45 PM is entered as

19:45, for example) if AM or PM is not specified.

Y2K issue: The conversion of two-digit year values is determined by the

TwoDigitYearCenturyWindow variable.

NOTE

The format of the date and time string varies when the values of

date/time formatting variables are changed.

StrToFloat function StrToFloat(const S: string): Extended;

Use StrToFloat to convert astring, S, to a floating-point value. S must consist of an

optional sign (+ or -), a string of digits with an optional decimal point, and an

optional mantissa. The mantissa consists of 'E' or 'e' followed by an optional sign

(+ or -) and a whole number. Leading and trailing blanks are ignored.

The DecimalSeparator global variable defines the character that must be used as

a decimal point. Thousand separators and currency symbols are not allowed in

the string. If S doesn't contain a valid value, StrToFloat raises an EConvertError

exception.

 Calculated Fields Scripting Guide Page 42 of 57

StrToInt function StrToInt(const S: string): Integer;

StrToInt converts the string S, which represents an integer-type number in either

decimal or hexadecimal notation, into a number.

If S does not represent a valid number, StrToInt raises an EConvertError exception.

StrToIntDef function StrToIntDef(const S: string; Default: Integer):

Integer;

StrToIntDef converts the string S, which represents an integer-type number in

either decimal or hexadecimal notation, into a number.

If S does not represent a valid number, StrToIntDef returns the number passed in

Default.

StrToTime function StrToTime(const S: string): TDateTime;

Call StrToTime to parse a string that specifies a time value. If S does not contain a

valid time, StrToTime raises an EConvertError exception.

The S parameter must consist of two or three numbers, separated by the

character defined by the TimeSeparator global variable, optionally followed by an

AM or PM indicator. The numbers represent hour, minute, and (optionally)

second, in that order. If the time is followed by AM or PM, it is assumed to be in

12-hour clock format. If no AM or PM indicator is included, the time is assumed

to be in 24-hour clock format.

NOTE

The format of the date and time string varies when the values of

date/time formatting variables are changed.

Time function Time: TDateTime;

Time returns the current time as a TDateTime value.

 Calculated Fields Scripting Guide Page 43 of 57

TimeToStr function TimeToStr(Time: TDateTime): string;

TimeToStr converts the Time parameter, a TDateTime value, to a string. The

conversion uses the format specified by the LongTimeFormat global variable.

Change the format of the string by changing the values of some of the date and

time variables.

IncMonth function IncMonth(const Date: TDateTime; NumberOfMonths:

Integer = 1): TDateTime;

IncMonth returns the value of the Date parameter, incremented by

NumberOfMonths months. NumberOfMonths can be negative, to return a date

N months previous.

If the input day of month is greater than the last day of the resulting month, the

day is set to the last day of the resulting month. The time of day specified by the

Date parameter is copied to the result.

IsLeapYear function IsLeapYear(Year: Word): Boolean;

Call IsLeapYear to determine whether the year specified by the Year parameter is

a leap year. Year specifies the calendar year.

Use YearOf to obtain the value of Year for IsLeapYear from a TDateTime value.

Now function Now: TDateTime;

Returns the current date and time, corresponding to Date + Time.

Logarithm functions

Name Description

Exp function Exp(X: Real): Real;

Exp returns the value of e raised to the power of X, where e is the base of the

natural logarithms.

 Calculated Fields Scripting Guide Page 44 of 57

Ln function Ln(X: Real): Real;

Ln returns the natural logarithm (Ln(e) = 1) of the real-type expression X.

Miscellaneous functions

Name Description

Assigned function Assigned(const P): Boolean;

Use Assigned to determine whether the pointer or procedure referenced by P

is nil.

P must be a variable reference of a pointer or procedural type. Assigned(P)

corresponds to the test P<> nil for a pointer variable, and @P <> nil for a

procedural variable.

Assigned returns False if P is nil, True otherwise.

NOTE

Assigned cannot detect a dangling pointer--that is, one that

isn't nil but no longer points to valid data. For example, in the

code example for Assigned, Assigned won't detect the fact

that P isn't valid.

Chr function Chr(X: Byte): Char;

Chr returns the character with the ordinal value (ASCII value) of the byte-type

expression, X.

 Calculated Fields Scripting Guide Page 45 of 57

Eof function Eof(var F): Boolean;

function Eof [(var F: Text)]: Boolean;

Eof tests whether the current file position is the end-of-file.

F is a file variable that has been opened for reading. If F is omitted, the

standard file variable Input is assumed.

Eof(F) returns True if the current file position is beyond the last character of the

file or if the file is empty; otherwise, Eof(F) returns False.

NOTE

Eof fails if the file F has been opened in write-only mode. For

example, you can’t use Eof with files opened using the Append

or Rewrite, which open a file in write-only mode.

High function High(X);

Call High to obtain the upper limit of an Ordinal, Array, or string value. The

result type is X, or the index type of X.

X is either a type identifier or a variable reference. The type denoted by X, or

the type of the variable denoted by X, must be one of the following:

For this type - High returns

Ordinal type (includes Int64) - The highest value in the range of the type.

Array type - The highest value within the range of the index type of the array.

For empty arrays, High returns –1.

String type - The declared size of the string.

Open array - The value, of type Integer, giving the number of elements in the

actual parameter minus one.

String parameter - The value, of type Integer, giving the number of elements in

the actual parameter minus one.

IsValidIdent function IsValidIdent(const Ident: string): Boolean;

IsValidIdent returns true if the given string is a valid identifier.

 Calculated Fields Scripting Guide Page 46 of 57

An identifier is defined as a character from the set ['A'..'Z', 'a'..'z', '_'] followed

by zero or more characters from the set ['A'..'Z', 'a'..'z', '0..'9', '_'].

Low function Low(X);

Call Low to obtain the lowest value or first element of an Ordinal, Array or

string. Result type is X, or the index type of X where X is either a type identifier

or a variable reference.

Type - Low returns

Ordinal type (includes Int64) - The lowest value in the range of the type

Array type - The lowest value within the range of the index type of the array

String type - eturns 0 only on shortstrings

Open array - Returns 0

String parameter - Returns 0

Ord function Ord(X);

X is an ordinal-type expression. The result is the ordinal position of X; its type

is the smallest standard integer type that can hold all values of X's type.

Ord cannot operate on Int64 values.

VarArrayCreate function VarArrayCreate(const Bounds: array of Integer;

VarType: TVarType): Variant;

VarArrayCreate creates a variant array with the bounds given by Bounds and

the element type given by VarType.

The Bounds parameter must contain an even number of values, where each

pair of values specifies the upper and lower bounds of one dimension of the

array.

The element type of the array, given by the VarType parameter, is a variant type

code. This must be one of the constants defined in the System unit. It cannot

include the varArray or varByRef bits. The element type cannot be varString or

a custom Variant type. To create a variant array of strings use the varOleStr

type code. If the element type is varVariant, the elements of the array are

 Calculated Fields Scripting Guide Page 47 of 57

themselves variants and can in turn contain variant arrays.

NOTE

Variant arrays with an element type of varByte are the

preferred method of passing binary data between OLE

Automation controllers and servers. Such arrays are subject to

no translation of their data, and can be efficiently accessed

using the VarArrayLock and VarArrayUnlock routines.

VarArrayHighBound function VarArrayHighBound(const A: Variant; Dim:

Integer): Integer;

VarArrayHighBound returns the high bound of the given dimension in the

given variant array. The Dim parameter should be 1 for the leftmost dimension,

2 for the second leftmost dimension, and so on. An EVariantError exception is

raised if the variant given by A is not an array, or if the dimension specified by

Dim does not exist.

VarArrayLowBound function VarArrayLowBound(const A: Variant; Dim: Integer):

Integer

VarArrayLowBound returns the low bound of the given dimension in the given

variant array. The Dim parameter should be 1 for the leftmost dimension, 2 for

the second leftmost dimension, and so on. An EVariantError exception is raised

if the variant given by A is not an array, or if the dimension specified by Dim

does not exist.

VarIsNull function VarIsNull(const V: Variant): Boolean;

VarIsNull returns True if the given variant contains the value Null. If the variant

contains any other value, the function result is False.

NOTE

Do not confuse a Null variant with an unassigned variant. A

Null variant is still assigned, but has the value Null. Unlike

unassigned variants, Null variants can be used in expressions

and can be converted to other types of variants.

 Calculated Fields Scripting Guide Page 48 of 57

VarToStr function VarToStr(const V: Variant): string;

VarToStr converts the data in the variant V to a string and returns the result. If

the variant has a null value, VarToStr returns an empty string.

Functions available in Basic language only

Name Description

Asc Returns an Integer value that represents the character code corresponding to

a character.

Public Overloads Function Asc(ByVal String As Char) As

Integer

Public Overloads Function AscW(ByVal String As Char) As

Integer

' -or-

Public Overloads Function Asc(ByVal String As String) As

Integer

Public Overloads Function AscW(ByVal String As String)

As Integer

For more information, refer to Asc, AscW Functions.

Atn Returns a Double specifying the arctangent of a number.

For more information, refer to Atn Function.

CBool Returns an expression that has been converted to a Variant of subtype

Boolean.

CBool(expression)

For more information, refer to CBool Function.

CByte Returns an expression that has been converted to a Variant of subtype Byte.

https://msdn.microsoft.com/en-us/library/zew1e4wc%28v=vs.90%29.aspx
https://msdn.microsoft.com/en-us/library/aa262680%28v=vs.60%29.aspx
https://msdn.microsoft.com/en-us/library/2k9sfx3c%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 49 of 57

CByte(expression)

For more information, refer to CByte Function.

CCur Returns an expression that has been converted to a Variant of subtype

Currency.

CCur(expression)

For more information, refer to CCur Function.

CDate Returns an expression that has been converted to a Variant of subtype Date.

CDate(date)

For more information, refer to CDate Function.

CDbl Returns an expression that has been converted to a Variant of subtype

Double.

CDbl(expression)

For more information, refer to CDbl Function.

Cint Returns an expression that has been converted to a Variant of subtype

Integer.

CInt(expression)

For more information, refer to CInt Function.

CLng Returns an expression that has been converted to a Variant of subtype Long.

CLng(expression)

For more information, refer to CLng Function.

https://msdn.microsoft.com/en-us/library/2ssb79wt%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/astsh4z8%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/2dt118h2%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/ftekwwt0%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/fctcwhw9%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/ck4c5842%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 50 of 57

CSng Returns an expression that has been converted to a Variant of subtype

Single.

CSng(expression)

For more information, refer to CSng Function.

CStr Returns an expression that has been converted to a Variant of subtype String.

CStr(expression)

For more information, refer to CStr Function.

DatePart Returns the specified part of a given date.

DatePart(interval, date[, firstdayofweek[,

firstweekofyear]])

For more information, refer to DatePart Function.

DateSerial Returns a Variant of subtype Date for a specified year, month, and day.

DateSerial(year, month, day)

For more information, refer to DateSerial Function.

DateValue Returns a Variant of subtype Date.

DateValue(date)

For more information, refer to DateValue Function.

Day Returns a whole number between 1 and 31, inclusive, representing the day of

the month.

Day(date)

https://msdn.microsoft.com/en-us/library/bh7t61cc%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/0zk841e9%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/4kt42529%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/1we4t8hy%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/we249285%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 51 of 57

For more information, refer to Day Function.

Fix Returns the integer portion of a number.

Fix(number)

For more information, refer to Fix Function.

FormatCurrency Returns an expression formatted as a currency value using the currency

symbol defined in the system control panel.

FormatCurrency(Expression[,NumDigitsAfterDecimal

[,IncludeLeadingDigit

 [,UseParensForNegativeNumbers [,GroupDigits]]]])

For more information, refer to FormatCurrency Function.

FormatDateTime Returns an expression formatted as a date or time.

FormatDateTime(Date[, NamedFormat])

For more information, refer to FormatDateTime Function.

FormatNumber Returns an expression formatted as a number.

FormatNumber(Expression [,NumDigitsAfterDecimal

[,IncludeLeadingDigit

 [,UseParensForNegativeNumbers [,GroupDigits]]]])

For more information, refer to FormatNumber Function.

Hex Returns a string representing the hexadecimal value of a number.

Hex(number)

For more information, refer to Hex Function.

https://msdn.microsoft.com/en-us/library/yyhfe92k%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/t4dseb50%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/k6skb64t%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/8aebkz6s%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/ws343esk%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/8t2d9cx5%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 52 of 57

Hour Returns a whole number between 0 and 23, inclusive, representing the hour

of the day.

Hour(time)

For more information, refer to Hour Function.

InStr Returns the position of the first occurrence of one string within another.

InStr([start,]string1, string2[, compare])

For more information, refer to InStr Function.

Int Returns the integer portion of a number.

Int(number)

For more information, refer to Int Function.

IsArray Returns a Boolean value indicating whether a variable is an array.

IsArray(varname)

For more information, refer to IsArray Function.

IsDate Returns a Boolean value indicating whether an expression can be converted

to a date.

IsDate(expression)

For more information, refer to IsDate Function.

IsEmpty Returns a Boolean value indicating whether a variable has been initialized.

IsEmpty(expression)

For more information, refer to IsEmpty Function.

https://msdn.microsoft.com/en-us/library/t5dx569a%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/wybb344c%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/t4dseb50%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/xdxy3zda%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/48y0723t%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/5cs4befa%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 53 of 57

IsNull Returns a Boolean value that indicates whether an expression contains no

valid data (Null).

IsNull(expression)

For more information, refer to IsNull Function.

IsNumeric Returns a Boolean value indicating whether an expression can be evaluated

as a number.

IsNumeric(expression)

For more information, refer to IsNumeric Function.

LBound Returns the smallest available subscript for the indicated dimension of an

array.

LBound(arrayname[, dimension])

For more information, refer to LBound Function.

LCase Returns a string that has been converted to lowercase.

LCase(string)

For more information, refer to LCase Function.

Left Returns a specified number of characters from the left side of a string.

Left(string, length)

For more information, refer to Left Function.

Len Returns the number of characters in a string or the number of bytes required

to store a variable.

https://msdn.microsoft.com/en-us/library/zbchw6hz%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/ehs9h2x9%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/65s334te%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/9fd71ty9%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/sk3xcs8k%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 54 of 57

Len(string | varname)

For more information, refer to Len Function.

Log Returns the natural logarithm of a number.

Log(number)

For more information, refer to Log Function.

LTrim Returns a copy of a string without leading spaces (LTrim)

LTrim(string)

For more information, refer to LTrim Function.

Mid Returns a specified number of characters from a string.

Mid(string, start[, length])

For more information, refer to Mid Function.

Minute Returns a whole number between 0 and 59, inclusive, representing the

minute of the hour.

Minute(time)

For more information, refer to Minute Function (VBScript).

Month Returns a whole number between 1 and 12, inclusive, representing the

month of the year.

Month(date)

For more information, refer to Month Function.

MonthName Returns a string indicating the specified month.

https://msdn.microsoft.com/en-us/library/42byt104%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/5xkbf3yw%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/c623wz83%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/wffts6k3%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/f41h26kz%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/0eeeket2%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 55 of 57

MonthName(month[, abbreviate])

For more information, refer to MonthName Function.

Replace Returns a string in which a specified substring has been replaced with

another substring a specified number of times.

Replace(expression, find, replacewith[, start[, count[,

compare]]])

For more information, refer to Replace Function.

Right Returns a specified number of characters from the right side of a string.

Right(string, length)

For more information, refer to Right Function.

Rnd Returns a random number.

Rnd[(number)]

For more information, refer to Rnd Function.

RTrim Returns a copy of a string without trailing spaces (RTrim).

RTrim(string)

For more information, refer to RTrim Function.

Second Returns a whole number between 0 and 59, inclusive, representing the

second of the minute.

Second(time)

For more information, refer to Second Function.

https://msdn.microsoft.com/en-us/library/58f13257%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/238kz954%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/eh8fefz1%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/e566zd96%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/c623wz83%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/sxs82baf%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 56 of 57

Sgn Returns an integer indicating the sign of a number.

Sgn(number)

For more information, refer to Sgn Function.

Space Returns a string consisting of the specified number of spaces.

Space(number)

For more information, refer to Space Function.

StrComp Returns a value indicating the result of a string comparison.

StrComp(string1, string2[, compare])

For more information, refer to StrComp Function.

String Returns a repeating character string of the length specified.

String(number, character)

For more information, refer to String Function.

TimeSerial Returns a Variant of subtype Date containing the time for a specific hour,

minute, and second.

TimeSerial(hour, minute, second)

For more information, refer to TimeSerial Function.

TimeValue Returns a Variant of subtype Date containing the time.

TimeValue(time)

For more information, refer to TimeValue Function.

https://msdn.microsoft.com/en-us/library/6tzwaedx%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/zfhb970d%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/ya4w6fwy%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/6978d214%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/s3e7s5xe%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/h7s5z2bc%28v=vs.84%29.aspx

 Calculated Fields Scripting Guide Page 57 of 57

UBound Returns the largest available subscript for the indicated dimension of an

array.

UBound(arrayname[, dimension])

For more information, refer to UBound Function.

UCase Returns a string that has been converted to uppercase.

UCase(string)

For more information, refer to UCase Function.

Weekday Returns a whole number representing the day of the week.

Weekday(date, [firstdayofweek])

For more information, refer to Weekday Function.

WeekdayName Returns a string indicating the specified day of the week.

WeekdayName(weekday, abbreviate, firstdayofweek)

For more information, refer to WeekdayName Function.

Year Returns a whole number representing the year.

Year(date)

For more information, refer to Year Function.

https://msdn.microsoft.com/en-us/library/fhx59d0t%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/1systdcy%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/t51x9wtx%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/00201has%28v=vs.84%29.aspx
https://msdn.microsoft.com/en-us/library/fhzx965c%28v=vs.84%29.aspx

